Algorithm Description
The naive approach for multiplication is slow and it takes about O(n^2) time. Karatsuba Multiplication is a more efficient algorithm that can be used for multiplication of numbers.
Intuition
We need to figure out how many passengers need to pass through a given city. Once we have that we know how many liters we need to move those passengers to the next city.
Approach
Divide and Conquer Let’s say we are give two numbers as inputs; 1234 and 5678
- we need to divide those numbers into halves
- 1234 can be divided into a: 12, b: 34
- 5678 can be divided into c: 56, d: 78
- compute a * c
- compute b * d
- compute ad + bc
- ad + bc = (a + b)(c + d) - ac - bd = ac + bc + ad + bd - ac - bd = ad + bc
- therefore we need to compute (a + b) * (c + d) and then subtract ac and bd from it
- return pow(10, b’s length * 2) * ac + pow(10, b’s length) * (ad + bc) + bd
- continue until one of the number has single digit, in that case we can simply execute multiplication and then return it
Complexity
- Time complexity: O(n^log2 3)
- need to use master theorem to calculate
Code
string multiply(string & num1, string & num2) {
if (num1.length() < num2.length()) swap(num1, num2);
if (num2.length() == 1 && num2[0] == '0') return "0";
int carry = 0;
string result = "";
for (int i = num1.length() - 1, bnum = num2[0] - '0'; i >= 0; --i) {
int anum = num1[i] - '0';
int calculated = anum * bnum + carry;
carry = (calculated >= 10) ? calculated / 10 : 0;
result = char('0' + (calculated % 10)) + result;
}
if (carry) result = char('0' + carry) + result;
return result;
}
string add(string num1, string num2) {
string result = "";
if (num1.length() < num2.length()) swap(num1, num2);
int carry = 0;
for (int i = num1.length() - 1, j = num2.length() - 1; i >= 0 || j >= 0; --i, --j) {
int a = num1[i] - '0';
int b = j >= 0 ? num2[j] - '0': 0;
int sum = a + b + carry;
carry = (sum >= 10) ? sum / 10 : 0;
result = char('0' + sum % 10) + result;
}
return carry ? "1" + result : result;
}
string subtract(string num1, string num2) {
if (num1.length() == num2.length() && num1 < num2) swap(num1, num2);
else if (num1.length() < num2.length()) swap(num1, num2);
for (int i = num1.length() - 1, j = num2.length() - 1; j >= 0; --i, --j) {
int a = num1[i] - '0';
int b = num2[j] - '0';
if (a < b) {
int k = i - 1;
while (num1[k] == '0') num1[k--] = '9';
num1[k] = char(num1[k] - 1);
a += 10;
}
int calc_result = a - b;
num1[i] = char('0' + calc_result);
}
int zero_cnt = 0;
for (int i = 0; i < num1.length() && num1[i] == '0'; ++i, ++zero_cnt) {}
return num1.substr(zero_cnt, num1.length() - zero_cnt);
}
void raisePower(string & num, int n) {
if (num[0] == '0') return;
for (int i = 0; i < n; ++i) num.push_back('0');
}
string karatsubaMultiplication(string & num1, string & num2) {
if (num1.length() == 1 || num2.length() == 1) return multiply(num1, num2);
if (num1.length() < num2.length()) swap(num1, num2);
int n = num1.length();
int a_len = n / 2 + (n % 2 ? 1 : 0);
int b_len = n - a_len;
string a = num1.substr(0, a_len);
string b = num1.substr(a_len, b_len);
string c = num2.length() < a_len ? "0": num2.substr(0, num2.length() - b_len);
string d = num2.length() <= b_len ? num2: num2.substr(num2.length() - b_len, b_len);
string a_plus_b = add(a, b);
string c_plus_d = add(c, d);
string a_plus_b_times_c_plus_d = karatsubaMultiplication(a_plus_b, c_plus_d);
string ac = karatsubaMultiplication(a, c);
string bd = karatsubaMultiplication(b, d);
string ad_plus_bc = subtract(subtract(a_plus_b_times_c_plus_d, ac), bd);
raisePower(ac, b_len * 2);
raisePower(ad_plus_bc, b_len);
return add(add(ac, ad_plus_bc), bd);
}